Polynomial Singular Values for Number of Wideband Sources Estimation and Principal Component Analysis

نویسندگان

  • Russell H. Lambert
  • Marcel Joho
  • Heinz Mathis
چکیده

A multipath enabled singular value decomposition (SVD) algorithm is presented, which will allow computation of wideband (polynomial) singular values, and hence, the signal+noise and noise subspaces. Polynomial singular values are ordered according to total energy. The number of sources can be estimated using the scalar total energy values. Results using both simulated data on the computer and actual speech recorded in a noisy multipath environment are given to demonstrate the usefulness of the techniques shown. After number of sources estimation, only the signal+noise subspace is used to create virtual sensors which have made optimal use of all the sensors. As a final signal copy step, standard blind independent component analysis (ICA) or blind source separation algorithms can be used to recover the original data from the virtual sensors. The number of estimated sources could also be given to a blind algorithm capable of using overdetermined sources and the algorithm can adaptively make use of all sensor data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shrinkage to Smooth Non-convex Cone : Principal Component Analysis as Stein Estimation

In Kuriki and Takemura (1997a) we established a general theory of James-Stein type shrinkage to convex sets with smooth boundary. In this paper we show that our results can be generalized to the case where shrinkage is toward smooth non-convex cones. A primary example of this shrinkage is descriptive principal component analysis, where one shrinks small singular values of the data matrix. Here ...

متن کامل

Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...

متن کامل

Evaluating Dye Concentration in Bicomponent Solution by PCA-MPR and PCA-ANN Techniques

This paper studies the application of principal component analysis, multiple polynomial regression, and artificial neural network ANN techniques to the quantitative analysis of binary mixture of dye solution. The binary mixtures of three textile dyes including blue, red and yellow colors were analyzed by PCA-Multiple polynomial Regression and PCA-Artificial Neural network PCA-ANN methods. The o...

متن کامل

Estimating the Number of Wideband Radio Sources

In this paper, a new approach for estimating the number of wideband sources is proposed which is based on RSS or ISM algorithms. Numerical results show that the MDL-based and EIT-based proposed algorithm havea much better detection performance than that in EGM and AIC cases for small differences between the incident angles of sources. In addition, for similar conditions, RSS algorithm offers hi...

متن کامل

Windowing Effects of Short Time Fourier Transform on Wideband Array Signal Processing Using Maximum Likelihood Estimation

During the last two decades, Maximum Likelihood estimation (ML) has been used to determine Direction Of Arrival (DOA) and signals propagated by the sources, using narrowband array signals. The algorithm fails in the case of wideband signals. As an attempt by the present study to overcome the problem, the array outputs are transformed into narrowband frequency bins, using short time Fourier tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001